Non-hamiltonian Schrödinger systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nontwist non-Hamiltonian systems.

We show that the nontwist phenomena previously observed in Hamiltonian systems exist also in time-reversible non-Hamiltonian systems. In particular, we study the two standard collision-reconnection scenarios and we compute the parameter space breakup diagram of the shearless torus. Besides the Hamiltonian routes, the breakup may occur due to the onset of attractors. We study these phenomena in ...

متن کامل

Quantization of Non-Hamiltonian Systems

In this paper a generalization of Weyl quantization which maps a dynamical operator in a function space to a dynamical superoperator in an operator space is suggested. Quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered. The usual Weyl quantization of observables can be derived as a specific case of suggested quantization if dynam...

متن کامل

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

Quantization of non-Hamiltonian and dissipative systems

A generalization of canonical quantization which maps a dynamical operator to a dynamical superoperator is suggested. Weyl quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered. The usual Weyl quantization of observables is a specific case of suggested quantization. This approach allows to define consistent quantization procedure fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S

سال: 2012

ISSN: 1937-1632

DOI: 10.3934/dcdss.2013.6.761